Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Breed ; 43(3): 17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37313295

RESUMO

Mushroom leaves (MLs) are malformed leaves that develop from the leaf veins in some of Chinese kale genotypes. To study the genetic model and molecular mechanism of ML development in Chinese kale, the F2 segregation population was constructed by two inbred lines, genotype Boc52 with ML and genotype Boc55 with normal leaves (NL). In the present study, we have identified for the first time that the development of mushroom leaves may be affected by the change of adaxial-abaxial polarity of leaves. Examination of the phenotypes of F1 and F2 segregation populations suggested that ML development is controlled by two dominant major genes inherited independently. BSA-seq analysis showed that a major quantitative trait locus (QTL) qML4.1 that controls ML development is located within 7.4 Mb on chromosome kC4. The candidate region was further narrowed to 255 kb by linkage analysis combined with insertion/deletion (InDel) markers, and 37 genes were predicted in this region. According to the expression and annotation analysis, a B3 domain-containing transcription factor NGA1-like gene, BocNGA1, was identified as a key candidate gene for controlling ML development in Chinese kale. Fifteen single nucleotide polymorphisms (SNPs) were found in coding sequences and 21 SNPs and 3 InDels found in the promoter sequences of BocNGA1 from the genotype Boc52 with ML. The expression levels of BocNGA1 in ML genotypes are significantly lower than in the NL genotypes, which suggests that BocNGA1 may act as a negative regulator for ML genesis in Chinese kale. This study provides a new foundation for Chinese kale breeding and for the study of the molecular mechanism of plant leaf differentiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01364-6.

2.
Plant J ; 115(3): 724-741, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37095638

RESUMO

Carotenoids are major accessory pigments in the chloroplast, and they also act as phytohormones and volatile compound precursors to influence plant development and confer characteristic colours, affecting both the aesthetic and nutritional value of fruits. Carotenoid pigmentation in ripening fruits is highly dependent on developmental trajectories. Transcription factors incorporate developmental and phytohormone signalling to regulate the biosynthesis process. By contrast to the well-established pathways regulating ripening-related carotenoid biosynthesis in climacteric fruit, carotenoid regulation in non-climacteric fruit is poorly understood. Capsanthin is the primary carotenoid of non-climacteric pepper (Capsicum) fruit; its biosynthesis is tightly associated with fruit ripening, and it confers red pigmentation to the ripening fruit. In the present study, using a coexpression analysis, we identified an R-R-type MYB transcription factor, DIVARICATA1, and demonstrated its role in capsanthin biosynthesis. DIVARICATA1 encodes a nucleus-localised protein that functions primarily as a transcriptional activator. Functional analyses showed that DIVARICATA1 positively regulates carotenoid biosynthetic gene (CBG) transcript levels and capsanthin levels by directly binding to and activating CBG promoter transcription. Furthermore, an association analysis revealed a significant positive association between DIVARICATA1 transcription level and capsanthin content. ABA promotes capsanthin biosynthesis in a DIVARICATA1-dependent manner. Comparative transcriptomic analysis of DIVARICATA1 in Solanaceae plants showed that its function likely differs among species. Moreover, the pepper DIVARICATA1 gene could be regulated by the ripening regulator MADS-RIN. The present study illustrates the transcriptional regulation of capsanthin biosynthesis and offers a target for breeding peppers with high red colour intensity.


Assuntos
Capsicum , Fatores de Transcrição/metabolismo , Carotenoides/metabolismo , Pigmentos Biológicos/metabolismo , Capsicum/genética , Capsicum/metabolismo , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética , Filogenia
3.
Plants (Basel) ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111909

RESUMO

Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd's mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes.

4.
Environ Sci Pollut Res Int ; 30(19): 55143-55157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36890404

RESUMO

Cemented tailings backfill (CTB) is the most cost-effective and environmentally friendly method to recycle tailings for filling mining. It is of great significance to study the fracture mechanism of CTB for safe mining. In this study, three cylindrical CTB samples with a cement-tailings ratio of 1:4 and a mass fraction of 72% were prepared. An acoustic emission (AE) test under uniaxial compression (UC) with WAW-300 microcomputer electro-hydraulic servo universal testing machine and DS2 series full information AE signal analyzer was carried out to discuss the AE characteristics of CTB, such as hits, energy, peak frequency, and AF-RA. Combined with particle flow and moment tensor theory, a meso AE model of CTB was constructed to reveal the fracture mechanism of CTB. The results show that (1) the AE law of CTB under UC has periodic characteristics, which can be divided into the rising stage, stable stage, booming stage, and active stage. (2) The peak frequency of the AE signal is mainly focused on three frequency bands. The ultra-high frequency AE signal may be the precursor information for CTB failure. (3) The low frequency band AE signals represent shear crack, while the medium and high frequency band AE signals represent tension crack. The shear crack initially decreases and then increases, and the tension crack is the opposite. (4) The fracture types of the AE source are divided into tension crack, mixed crack, and shear crack. The tension crack is dominant, while a larger magnitude AE source is frequently shear crack. The results can provide a basis for the stability monitoring and fracture prediction of CTB.


Assuntos
Acústica , Mineração , Pressão
5.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499110

RESUMO

Progoitrin (2-hydroxy-3-butenyl glucosinolate, PRO) is the main source of bitterness of Brassica plants. Research on the biosynthesis of PRO glucosinolate can aid the understanding of the nutritional value in Brassica plants. In this study, four ODD genes likely involved in PRO biosynthesis were cloned from Chinese kale. These four genes, designated as BocODD1-4, shared 75-82% similarities with the ODD sequence of Arabidopsis. The sequences of these four BocODDs were analyzed, and BocODD1 and BocODD2 were chosen for further study. The gene BocODD1,2 showed the highest expression levels in the roots, followed by the leaves, flowers, and stems, which is in accordance with the trend of the PRO content in the same tissues. Both the expression levels of BocODD1,2 and the content of PRO were significantly induced by high- and low-temperature treatments. The function of BocODDs involved in PRO biosynthesis was identified. Compared with the wild type, the content of PRO was increased twofold in the over-expressing BocODD1 or BocODD2 plants. Meanwhile, the content of PRO was decreased in the BocODD1 or BocODD2 RNAi lines more than twofold compared to the wildtype plants. These results suggested that BocODD1 and BocODD2 may play important roles in the biosynthesis of PRO glucosinolate in Chinese kale.


Assuntos
Arabidopsis , Brassica , Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Glucosinolatos
6.
Micromachines (Basel) ; 13(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36363961

RESUMO

The influence of the substrate temperature on the structural, surface morphological, optical and nanomechanical properties of NiO films deposited on glass substrates using radio-frequency magnetron sputtering was examined by X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Visible spectroscopy and nanoindentation, respectively. The results indicate that the substrate temperature exhibits significant influences on both the grain texturing orientation and surface morphology of the films. Namely, the dominant crystallographic orientation of the films switches from (111) to (200) accompanied by progressively roughening of the surface when the substrate temperature is increased from 300 °C to 500 °C. The average transmittance of the NiO films was also found to vary in the range of 60-85% in the visible wavelength region, depending on the substrate temperature and wavelength. In addition, the optical band gap calculated from the Tauc plot showed an increasing trend from 3.18 eV to 3.56 eV with increasing substrate temperature. Both the hardness and Young's modulus of NiO films were obtained by means of the nanoindentation continuous contact stiffness measurements mode. Moreover, the contact angle between the water droplet and film surface also indicated an intimate correlation between the surface energy, hence the wettability, of the film and substrate temperature.

7.
Physiol Plant ; 174(5): e13773, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36066309

RESUMO

Anthocyanins, vital metabolites in plants, are formed by anthocyanidins combined with various monosaccharides, including glucose, rhamnose, and arabinose. Rhamnose contributes greatly to the glycosylation of anthocyanidins. There are two kinds of rhamnose synthase (RS): rhamnose biosynthesis (RHM), and nucleotide-RS/epimerase-reductase (UER1). Nevertheless, no RS isoform was reported to be involved in anthocyanin synthesis. Here, three homologous PhRHM genes, namely PhRHM1, PhRHM2, and PhRHM3, and one PhUER1 gene from petunia were cloned and characterized. Green fluorescent protein fusion protein assays revealed that PhRHMs and PhUER1 are localized in the cytoplasm. We obtained PhRHM1 or/and PhRHM2 or PhUER1 silenced petunia plants and did not attempt to obtain PhRHM3 silenced plants since PhRHM3 mRNA was not detected in petunia organs examined. PhRHM1 and PhRHM2 (PhRHM1-2) silencing induced abnormal plant growth and decreased the contents of l-rhamnose, photosynthetic pigments and total anthocyanins, while PhUER1 silencing did not cause any visible phenotypic changes. Flavonoid metabolome analysis further revealed that PhRHM1-2 silencing reduced the contents of anthocyanins with rhamnose residue. These results revealed that PhRHMs contribute to the biosynthesis of rhamnose and that PhRHMs participate in the anthocyanin rhamnosylation in petunia, while PhUER1 does not.


Assuntos
Petunia , Petunia/genética , Antocianinas/metabolismo , Ramnose/metabolismo , Arabinose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Folhas de Planta/metabolismo , Flavonoides/metabolismo , Oxirredutases/metabolismo , Glucose/metabolismo , Nucleotídeos/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo
8.
Front Plant Sci ; 13: 971230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161016

RESUMO

The fruit development and ripening process involve a series of changes regulated by fine-tune gene expression at the transcriptional level. Acetylation levels of histones on lysine residues are dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which play an essential role in the control of gene expression. However, their role in regulating fruit development and ripening process, especially in pepper (Capsicum annuum), a typical non-climacteric fruit, remains to understand. Herein, we performed genome-wide analyses of the HDAC and HAT family in the pepper, including phylogenetic analysis, gene structure, encoding protein conserved domain, and expression assays. A total of 30 HAT and 15 HDAC were identified from the pepper genome and the number of gene differentiation among species. The sequence and phylogenetic analysis of CaHDACs and CaHATs compared with other plant HDAC and HAT proteins revealed gene conserved and potential genus-specialized genes. Furthermore, fruit developmental trajectory expression profiles showed that CaHDAC and CaHAT genes were differentially expressed, suggesting that some are functionally divergent. The integrative analysis allowed us to propose CaHDAC and CaHAT candidates to be regulating fruit development and ripening-related phytohormone metabolism and signaling, which also accompanied capsaicinoid and carotenoid biosynthesis. This study provides new insights into the role of histone modification mediate development and ripening in non-climacteric fruits.

9.
Genes (Basel) ; 12(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34573381

RESUMO

The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD genes family is necessary. Here, we identified 160, 179, and 337 putative 2OGDs from Brassica rapa, Brassica oleracea, and Brassica napus. According to their gene structure, domain, phylogenetic features, function, and previous studies, we also divided 676 2OGDs into three subfamilies: DOXA, DOXB, and DOXC. Additionally, homologous and phylogenetic comparisons of three subfamily genes provided valuable insight into the evolutionary characteristics of the 2OGD genes from Brassica plants. Expression profiles derived from the transcriptome and Genevestigator database exhibited distinct expression patterns of the At2OGD, Br2OGD, and Bo2OGD genes in different developmental stages, tissues, or anatomical parts. Some 2OGD genes showed high expression levels in various tissues, such as callus, seed, silique, and root tissues, while other 2OGD genes were expressed at very low levels in other tissues. Analysis of six Bo2OGD genes in different tissues by qRT-PCR indicated that these genes are involved in the metabolism of gibberellin, which in turn regulates plant growth and development. Our working system analysed 2OGD gene families of three Brassica plants and laid the foundation for further study of their functional characterization.


Assuntos
Brassica/genética , Dioxigenases/genética , Proteínas de Arabidopsis/genética , Brassica/classificação , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Giberelinas/metabolismo , Redes e Vias Metabólicas/genética , Família Multigênica , Filogenia , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Transcriptoma
10.
Plant Sci ; 305: 110835, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691969

RESUMO

Anthocyanins are important flavonoid pigments in plants. Malonyl CoA is an important intermediate in anthocyanin synthesis, and citrate, formed by citrate synthase (CS) catalysing oxaloacetate, is the precursor for the formation of malonyl-CoA. CS is composed of two isoforms, mitochondrial citrate synthase (mCS), a key enzyme of the tricarboxylic acid (TCA) cycle, and citrate synthase (CSY) localizated in microbodies in plants. However, no CS isoform involvement in anthocyanin synthesis has been reported. In this study, we identified the entire CS family in petunia (Petunia hybrida): PhmCS, PhCSY1 and PhCSY2. We obtained petunia plants silenced for the three genes. PhmCS silencing resulted in abnormal development of leaves and flowers. The contents of citrate and anthocyanins were significantly reduced in flowers in PhmCS-silenced plants. However, silencing of PhCSY1 and/or PhCSY2 did not cause a visible phenotype change in petunia. These results showed that PhmCS is involved in anthocyanin synthesis and the development of leaves and flowers, and that the citrate involved in anthocyanin synthesis mainly derived from mitochondria rather than microbodies in petunia.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Flores/enzimologia , Flores/genética , Petunia/enzimologia , Petunia/genética , Regulação da Expressão Gênica de Plantas , Genes Mitocondriais
11.
Hortic Res ; 7(1): 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082969

RESUMO

Plant biosynthesis involves numerous specialized metabolites with diverse chemical natures and biological activities. The biosynthesis of metabolites often exclusively occurs in response to tissue-specific combinatorial developmental cues that are controlled at the transcriptional level. Capsaicinoids are a group of specialized metabolites that confer a pungent flavor to pepper fruits. Capsaicinoid biosynthesis occurs in the fruit placenta and combines its developmental cues. Although the capsaicinoid biosynthetic pathway has been largely characterized, the regulatory mechanisms that control capsaicinoid metabolism have not been fully elucidated. In this study, we combined fruit placenta transcriptome data with weighted gene coexpression network analysis (WGCNA) to generate coexpression networks. A capsaicinoid-related gene module was identified in which the MYB transcription factor CaMYB48 plays a critical role in regulating capsaicinoid in pepper. Capsaicinoid biosynthetic gene (CBG) and CaMYB48 expression primarily occurs in the placenta and is consistent with capsaicinoid biosynthesis. CaMYB48 encodes a nucleus-localized protein that primarily functions as a transcriptional activator through its C-terminal activation motif. CaMYB48 regulates capsaicinoid biosynthesis by directly regulating the expression of CBGs, including AT3a and KasIa. Taken together, the results of this study indicate ways to generate robust networks optimized for the mining of CBG-related regulators, establishing a foundation for future research elucidating capsaicinoid regulation.

13.
Mol Biol Rep ; 47(8): 6027-6041, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32725605

RESUMO

The B-box proteins (BBXs) are a class of zinc finger transcription factors containing one or two B-BOX domains that play important roles in plant growth, development and stress response. The petunia (Petunia hybrida) is a model ornamental plant, and its draft genome has been published. However, no systematic study of the BBX gene family in Petunia has been reported. In this study, a total of 28 BBX members from the Petunia genome were identified. We performed analyses of their phylogenetic relationships, structures, conserved motifs, promoter regions, and expression patterns. Based on the phylogenetic relationship, the PhBBXs were divided into six groups. Analysis of the gene structures and conserved motifs further confirmed the closer relationships in each group. Based on the RNA-seq data, the transcript abundance of PhBBXs in different tissues were divided into two major groups. The analysis of cis-elements showed that many stress responsive elements appeared in the promoter region of most PhBBX genes. The stress response patterns of PhBBXs were detected under drought, salinity, cold and heat treatments. Based on the RNA-seq data, we found that 3 genes responded to drought, 8 genes responded to salt, 18 genes responded to cold, and 15 genes responded to heat. In conclusion, this study may facilitate further functional studies of BBXs in Petunia.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Família Multigênica , Petunia/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Temperatura Baixa , Sequência Conservada , Secas , Temperatura Alta , Filogenia , Proteínas de Plantas/biossíntese , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA-Seq , Salinidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Transcrição/biossíntese
14.
J Exp Bot ; 71(16): 4858-4876, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364241

RESUMO

Cytosolic acetyl-CoA is an intermediate of the synthesis of most secondary metabolites and the source of acetyl for protein acetylation. The formation of cytosolic acetyl-CoA from citrate is catalysed by ATP-citrate lyase (ACL). However, the function of ACL in global metabolite synthesis and global protein acetylation is not well known. Here, four genes, PaACLA1, PaACLA2, PaACLB1, and PaACLB2, which encode the ACLA and ACLB subunits of ACL in Petunia axillaris, were identified as the same sequences in Petunia hybrida 'Ultra'. Silencing of PaACLA1-A2 and PaACLB1-B2 led to abnormal leaf and flower development, reduced total anthocyanin content, and accelerated flower senescence in petunia 'Ultra'. Metabolome and acetylome analysis revealed that PaACLB1-B2 silencing increased the content of many downstream metabolites of acetyl-CoA metabolism and the levels of acetylation of many proteins in petunia corollas. Mechanistically, the metabolic stress induced by reduction of acetyl-CoA in PaACL-silenced petunia corollas caused global and specific changes in the transcriptome, the proteome, and the acetylome, with the effect of maintaining metabolic homeostasis. In addition, the global proteome and acetylome were negatively correlated under acetyl-CoA deficiency. Together, our results suggest that ACL acts as an important metabolic regulator that maintains metabolic homeostasis by promoting changes in the transcriptome, proteome. and acetylome.


Assuntos
Petunia , Proteoma , ATP Citrato (pro-S)-Liase , Acetilcoenzima A , Flores/genética , Homeostase , Petunia/genética
15.
Plants (Basel) ; 9(3)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155874

RESUMO

Nuclear Factor Ys (NF-Ys) are a class of heterotrimeric transcription factors that play key roles in many biological processes, such as abiotic stress responses, flowering time, and root development. The petunia (Petunia hybrida) is a model ornamental plant, and its draft genome has been published. However, no details regarding the NF-Y gene family in petunias are available. Here, 27 NF-Y members from the petunia genome were identified, including 10 PhNF-YAs, 13 PhNF-YBs, and 4 PhNF-YCs. Multiple alignments showed that all PhNF-Y proteins had clear conserved core regions flanked by non-conserved sequences. Phylogenetic analyses identified five pairs of orthologues NF-YB proteins from Petunia and Arabidopsis, and six pairs of paralogues NF-Y proteins in Petunia. Analysis of the gene structure and conserved motifs further confirmed the closer relationship in each subfamily. Bioinformatics analysis revealed that 16 PhNF-Ys could be targeted by 18 miRNA families. RNA-seq results showed that expression patterns of PhNF-Ys among four major organs (leaf, stem, flower, and root) were clustered into six major groups. The stress response pattern of PhNF-Ys was identified under cold, heat, drought, and salinity treatments. Based on the RNA-seq data, we found that 3 genes responded to drought, 4 genes responded to salt, 10 genes responded to cold, and 9 genes responded to hot. In conclusion, this study provides useful information for further studying the functions of NF-Ys in stress response.

16.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718028

RESUMO

Chinese kale (Brassica oleracea var. chinensis Lei) is an important vegetable crop in South China, valued for its nutritional content and taste. Nonetheless, the thermal tolerance of Chinese kale still needs improvement. Molecular characterization of Chinese kale's heat stress response could provide a timely solution for developing a thermally tolerant Chinese kale variety. Here, we report the cloning of multi-protein bridging factor (MBF) 1c from Chinese kale (BocMBF1c), an ortholog to the key heat stress responsive gene MBF1c. Phylogenetic analysis showed that BocMBF1c is highly similar to the stress-response transcriptional coactivator MBF1c from Arabidopsis thaliana (AtMBF1c), and the BocMBF1c coding region conserves MBF1 and helix-turn-helix (HTH) domains. Moreover, the promoter region of BocMBF1c contains three heat shock elements (HSEs) and, thus, is highly responsive to heat treatment. This was verified in Nicotiana benthamiana leaf tissue using a green fluorescent protein (GFP) reporter. In addition, the expression of BocMBF1c can be induced by various abiotic stresses in Chinese kale which indicates the involvement of stress responses. The BocMBF1c-eGFP (enhanced green fluorescent protein) chimeric protein quickly translocated into the nucleus under high temperature treatment in Nicotiana benthamiana leaf tissue. Overexpression of BocMBF1c in Arabidopsis thaliana results in a larger size and enhanced thermal tolerance compared with the wild type. Our results provide valuable insight for the role of BocMBF1c during heat stress in Chinese kale.


Assuntos
Brassica/genética , Proteínas de Plantas/genética , Termotolerância , Transativadores/genética , Transporte Ativo do Núcleo Celular , Brassica/metabolismo , Núcleo Celular/metabolismo , Clonagem Molecular , Sequência Conservada , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Transgenes
17.
J Agric Food Chem ; 67(39): 10891-10903, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31505929

RESUMO

Jasmonates (JAs) play an important role in plant developmental processes and regulate the biosynthesis of various specialized metabolites, and transcription factors are crucial in mediating JA signaling to regulate these processes. Capsaicinoids (Caps) are intriguing specialized metabolites produced uniquely by Capsicum species that give their fruits a pungent flavor to defend against herbivory and pathogens. In this study, we identify a R2R3-MYB transcription factor CaMYB108 and demonstrate its roles in regulating the biosynthesis of Caps and stamen development. Transcriptional analysis indicated that CaMYB108 was preferentially expressed in the flower and fruit, while the subcellular localization of CaMYB108 was shown to be the nucleus. Virus-induced gene silencing of CaMYB108 led to the expression of capsaicinoid biosynthetic genes (CBGs), and the contents of Caps dramatically reduce. Moreover, the CaMYB108-silenced plants showed delayed anther dehiscence and reduced pollen viability. Transient overexpression of CaMYB108 caused the expression of CBGs to be upregulated, and the Caps content significantly increased. The results of dual-luciferase reporter assays showed that CaMYB108 targeted CBG promoters. In addition, the expression of CaMYB108 and CBGs was inducible by methyl jasmonate and was consistent with the increased content of Caps. Overall, our results indicate that CaMYB108 is involved in the regulation of Caps biosynthesis and stamen development.


Assuntos
Capsaicina/metabolismo , Capsicum/metabolismo , Ciclopentanos/metabolismo , Flores/crescimento & desenvolvimento , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
18.
Polymers (Basel) ; 11(7)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269681

RESUMO

Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal ion concentration conditions were also studied. An adsorption mechanism was proposed and discussed in terms of the FT-IR results.

19.
New Phytol ; 223(2): 922-938, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087356

RESUMO

Plants produce countless specialized metabolites crucial for their development and fitness, and many are useful bioactive compounds. Capsaicinoids are intriguing genus-specialized metabolites that confer a pungent flavor to Capsicum fruits, and they are widely applied in different areas. Among the five domesticated Capsicum species, Capsicum chinense has a high content of capsaicinoids, which results in an extremely hot flavor. However, the species-specific upregulation of capsaicinoid-biosynthetic genes (CBGs) and the evolution of extremely pungent peppers are not well understood. We conducted genetic and functional analyses demonstrating that the quantitative trait locus Capsaicinoid1 (Cap1), which is identical to Pun3 contributes to the level of pungency. The Cap1/Pun3 locus encodes the Solanaceae-specific MYB transcription factor MYB31. Capsicum species have evolved placenta-specific expression of MYB31, which directly activates expression of CBGs and results in genus-specialized metabolite production. The capsaicinoid content depends on MYB31 expression. Natural variations in the MYB31 promoter increase MYB31 expression in C. chinense via the binding of the placenta-specific expression of transcriptional activator WRKY9 and augmentation of CBG expression, which promotes capsaicinoid biosynthesis. Our findings provide insights into the evolution of extremely pungent C. chinense, which is due to natural variations in the master regulator, and offers targets for engineering or selecting flavor in Capsicum.


Assuntos
Evolução Biológica , Capsicum/genética , Variação Genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Vias Biossintéticas/genética , Capsaicina/metabolismo , Regulação da Expressão Gênica de Plantas , Mapeamento Físico do Cromossomo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Locos de Características Quantitativas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Genes (Basel) ; 10(3)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857170

RESUMO

Chinese kale is a native vegetable in Southern China and the flowering stalk is the most commonly used edible part due to its high glucosinolate content and other nutritional qualities. The GTR protein played important roles in the glucosinolate transport process. In this study, three BocGTR1 genes were cloned from Chinese kale for the first time. Their gene structure, physicochemical properties, signal peptides, transmembrane structures, functional domains, second and third-order protein structures, and phylogenetic relationships were predicted. The expression levels of BocGTR1a and BocGTR1c were much higher than those of BocGTR1b in various tissues, especially in leaves and buds. In addition, the expression patterns of three genes were examined under various abiotic stresses or hormone treatment, including those induced by wounding, heat stress, methyl jasmonate, salicylic acid, salt, and MgCl2 treatment. BocGTR1a and BocGTR1c were strongly induced by wounding and heat stress. The expression of BocGTR1a and BocGTR1c was significantly silenced in plants transformed by RNAi technology. Total glucosinolate content was significantly decreased in mature leaves and increased in roots of RNAi-transformed plants compared to wild-type plants. In addition, we found that BocGTR1a and BocGTR1c may participate in glucosinolate accumulation in different tissues with a selection for specific glucosinolates. These results indicated that BocGTR1a and BocGTR1c may be the key genes involved in the glucosinolate accumulation in different tissues of Chinese kale.


Assuntos
Brassica/genética , Glucosinolatos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Clonagem Molecular , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...